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1 Introduction

This article is the english short version of the german diploma. The german full text can be found
on the website http://www.patrick-reichert.de. Only the most important chapter is contained
in this monograph. It is the last chapter of the original document and it was corrected on several
paragraphs.

Fuchsian triangle groups are defined having the presentation

4(m1,m2,m3) = 〈x, y |xm1 = ym2 = (xy)m3 = 1〉,

while m1,m2,m3 > 1 are integers with (1/m1) + (1/m2) + (1/m3) < 1. Every Fuchsian triangle
group 4(m1,m2,m3) has a faithful representation in PSL(2, R).

For given triangle group G = 4(m1,m2,m3) and alternating group An this article studies the
existence of epimorphisms

ϕ : 4(m1,m2,m3) 7→ An.

If ϕ1 and ϕ2 are two different epimorphisms defined for the same pair (G, An), it is interesting
whether the kernels

N1 = kerϕ1 and N2 = kerϕ2

are conjugate in PSL(2, R).

It will be shown that for every choice of G = 4(m1,m2,m3) there is a supergroup H with

G ≤ H < PSL(2, R)

that has the following property: If N1, N2 are normal subgroups of G with finite index and h is an
element of PSL(2, R) with Nh

1 = N2, then h ∈ H.

It is due to a famous result of Margulis that the proof of this statement is very simple for non-
arithmetic triangle groups. For arithmetic Fuchsian groups an similiar result can be obtained but
this article only handles the example

ϕi : 4(3, 5, 5) 7→ A5.
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2 Epimorphisms from triangle onto alternating groups

The aim of this section is to look in which cases normal subgroups of Fuchsian triangle groups are
conjugate in PSL(2, R). It is due to results of Margulis that for maximal non-arithmetic groups it
is easy to answer this question.

2.1 The non-arithmetic case

Looking to epimorphisms that are mapping Fuchsian triangle groups onto alternating groups, it is
interesting whether the kernels of these epimorphisms are conjugate in PSL(2, R). In the following
section the results of G.A. Margulis will be presented to answer this question for all non-arithmetic
triangle groups.

To understand his result some particular properties of triangle groups will be shown. The
content of this introduction is based on [GGD99], [SIS03] and [Bea83].

Triangle groups differ from other Fuchsian groups in the following point: All embeddings of
a triangle group into the group PSL(2, R) are conjugate. Therefore the notation 4(m1,m2,m3)
describes a Fuchsian group with signature (0; m1,m2,m3) that is uniquely defined in PSL(2, R)
up to conjugacy.

Further the triangle groups have the following remarkable property.

Lemma 2.1 ([Bea83]) Let G be a discrete group of conformal isometries of the hyperbolic plane.
If G contains a triangle group as subgroup, then G itself is a triangle group.

Definition 2.2 A maximal Fuchsian group is a group, that is not contained in another Fuchsian
group.

The following theorem lists all inclusions between triangle groups and determines thus all maximal
triangle groups.

Theorem 2.3 (Singerman, [Sin72]) This is the complete list of all triangle groups that are con-
tained in another triangle group:

4(n, n, n) C 4(3, 3, n) with index 3,
4(n, n, n) C 4(2, 3, 2n) with index 6,
4(n1, n1, n2) C 4(2, n1, 2n2) with index 2,
4(7, 7, 7) < 4(2, 3, 7) with index 24,
4(2, 7, 7) < 4(2, 3, 7) with index 9,
4(3, 3, 7) < 4(2, 3, 7) with index 8,
4(4, 8, 8) < 4(2, 3, 8) with index 12,
4(3, 8, 8) < 4(2, 3, 8) with index 10,
4(9, 9, 9) < 4(2, 3, 9) with index 12,
4(4, 4, 5) < 4(2, 4, 5) with index 6,
4(n, 4n, 4n) < 4(2, 3, 4n) with index 6,
4(n, 2n, 2n) < 4(2, 4, 2n) with index 4,
4(3, n, 3n) < 4(2, 3, 3n) with index 4,
4(2, n, 2n) < 4(2, 3, 2n) with index 3.

The following definitons and theorems are needed to understand the result of Margulis.

Definition 2.4 Two Fuchsian groups G1 and G2 are said to be commensurable if their interse-
cion G1 ∩G2 has finite index in both of them.

Definition 2.5 ([SIS03]) Let G be a finite covolume Fuchsian group. Define with

Comm(G) =
{
t ∈ PGL(2, R) |G and Gt = t−1Gt are commensurable

}
the commensurator of G. Further define Comm+(G) to be the subgroup of Comm(G) consisting
of conformal elements:

Comm+(G) = Comm(G) ∩ PSL(2, R)
=

{
t ∈ PSL(2, R) |G and Gt are commensurable

}
.
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The importance of the commensurator is because of the following result due to Margulis [Mar91]:

Theorem 2.6 (Margulis)

(1) Formulation in [SIS03]: Let G be a finite covolume Fuchsian group. Then G is a subgroup of
finite index in Comm(G) if and only if G is non-arithmetic.

(2) Formulation in [GGD99]: The commensurator Comm+(G) of a triangle group G is Fuchsian
if and only if G is non-arithmetic.

Now the announced theorem can be proven as follows.

Theorem 2.7 Let G = 4(m1,m2,m3) < PSL(2, R) be a maximal non-arithmetic triangle group.
Then for two different normal subgroups N1, N2 E G with finite index there is no element h ∈
PSL(2, R) with Nh

1 = N2.

Proof. This is a proof by contradiction. Suppose there is an element h ∈ PSL(2, R) \ G with
Nh

1 = N2. It will be shown that this assumption leads to h ∈ G, contrary to the restriction that
N1 and N2 are different.

Since G is non-arithmetic, theorem 2.6 (1) states, that G is a subgroup of Comm(G) with finite
index. While being Fuchsian, G even is contained in Comm+(G). Using lemma 2.1 it can be
obtained that Comm+(G) is a triangle group. Since G is maximal, G = Comm+(G) must hold.

N1 and N2 are normal subgroups of G with finite index and therefore commensurable. Since
they are conjugate in PSL(2, R), the conjugating element h is contained in the commensurator
of G. This can be concluded from the following argumentation: Since N1 and N2 are normal
subgroups of G with finite index, from the inclusions

N2 ≤ G ∩ Gh ≤ G and

Nh
1 ≤ G ∩ Gh ≤ Gh

it can be concluded that h ∈ Comm(G). Then h ∈ PSL(2, R) implies the contradiction

h ∈ Comm(G) ∩ PSL(2, R) = Comm+(G) = G. 2
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2.2 The arithmetic case

The aim of this section is to look whether the same results like theorem 2.7 can be achieved for
arithmetic triangle groups. K. Takeuchi classifies all arithmetic triangle groups of first type in
[Tak77a] and [Tak77b]. He shows that they are contained in 18 commensurability classes in the
wide sense over 13 fields. The following table contains the full list.

Class Signature (m1,m2,m3) Field F
I (2,4,6) (2,6,6) (3,4,4) (3,6,6) Q
II (2,3,8) (2,4,8) (2,6,8) (2,8,8) (3,3,4) (3,8,8) (4,4,4) (4,6,6) (4,8,8) Q(

√
2)

III (2,3,12) (2,6,12) (3,3,6) (3,4,12) (3,12,12) (6,6,6) Q(
√

3)
IV (2,4,12) (2,12,12) (4,4,6) (6,12,12) Q(

√
3)

V (2,4,5) (2,4,10) (2,5,5) (2,10,10) (4,4,5) (5,10,10) Q(
√

5)
VI (2,5,6) (3,5,5) Q(

√
5)

VII (2,3,10) (2,5,10) (3,3,5) (5,5,5) Q(
√

5)
VIII (3,4,6) Q(

√
6)

IX (2,3,7) (2,3,14) (2,4,7) (2,7,7) (2,7,14) (3,3,7) (7,7,7) Q(cos(π/7))
X (2,3,9) (2,3,18) (2,9,18) (3,3,9) (3,6,18) (9,9,9) Q(cos(π/9))
XI (2,4,18) (2,18,18) (4,4,9) (9,18,18) Q(cos(π/9))
XII (2,3,16) (2,8,16) (3,3,8) (4,16,16) (8,8,8) Q(cos(π/8))
XIII (2,5,20) (5,5,10) Q(cos(π/10))
XIV (2,3,24) (2,12,24) (3,3,12) (3,8,24) (6,24,24) (12,12,12) Q(cos(π/12))
XV (2,5,30) (5,5,15) Q(cos(π/15))
XVI (2,3,30) (2,15,30) (3,3,15) (3,10,30) (15,15,15) Q(cos(π/15))
XVII (2,5,8) (4,5,5) Q(

√
2,
√

5)
XVIII (2,3,11) Q(cos(π/11))

The arithmetic group 4(3, 5, 5) has two epimorphisms into the alternating group A5. The following
theorem takes a look to the kernels of these epimorphisms and will be proven in the next sections.

Theorem 2.8 (Main Theorem) For the triangle group

4(3, 5, 5) = 〈x, y |x3 = y5 = (xy)5 = 1〉

exist two epimorphisms into the alternating group A5 defined by

ϕ1(x) = (1, 2, 3), ϕ1(y) = (1, 2, 3, 4, 5), ϕ1(xy) = (1, 3, 2, 4, 5) and
ϕ2(x) = (1, 2, 4), ϕ2(y) = (1, 2, 3, 4, 5), ϕ2(xy) = (1, 3, 4, 2, 5).

The kernels N1 = ker ϕ1 and N2 = ker ϕ2 are not conjugate in the group PSL(2, R). Thus the
Riemann surfaces H2/N1 and H2/N2 are two nonisomorphic Riemann surfaces with the same
automorphism group A5 and the same branching type.

The proof of this theorem will consist of the following steps:

• The group 4(3, 5, 5) is contained in the maximal triangle group 4(2, 5, 6). It will be shown
that N1 and N2 are not conjugate in 4(2, 5, 6).

• Moreover it will be proven that N1 and N2 are surface groups, i.e. torsion free and with
cocompact fundamental regions.

• In the last step it will be concluded that these properties are enough to show that N1 and
N2 are not conjugate in PSL(2, R).

Embedding of 4(3, 5, 5) into 4(2, 5, 6)

Theorem 2.3 states that the triangle group 4(3, 5, 5) is only contained in one different triangle
group: as normal subgroup of the maximal arithmetic triangle group 4(2, 5, 6) with index 2. The
triangle groups have the following presentations:

4(3, 5, 5) = 〈x1, y1 |x3
1 = y5

1 = (x1y1)5 = 1〉,
4(2, 5, 6) = 〈x2, y2 |x2

2 = y5
2 = (x2y2)6 = 1〉.
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The following three elements generate a subgroup U of (2, 5, 6) that is isomorphic to (3, 5, 5):

(1) The element x3 = (x2y2)2 has order 3.

(2) The element y3 = (x2y2)−2y2 has order 5.

(3) The element x3y3 = y2 has order 5.

The order of the element y3 can be calculated as shown below:

y5
3 =

[
(x2y2)−2y2

]5
=

[
y−1
2 x−1

2 y−1
2 x−1

2 y2

]5
= y−1

2 x−1
2 y−1

2 x−1
2 y2y

−1
2 x−1

2 y−1
2 x−1

2 y2y
−1
2 x−1

2 y−1
2 x−1

2 y2y
−1
2 x−1

2 y−1
2 x−1

2 y2y
−1
2 x−1

2 y−1
2 x−1

2 y2

= y−1
2 x−1

2 (y−1
2 )5x−1

2 y2 = y−1
2 x−2

2 y2 = 1

The program GAP has confirmed, that

|4(2, 5, 6) : U | = |4(2, 5, 6) : 〈(x2y2)2, (x2y2)−2y2〉| = 2.

It can be shown that there is an element h ∈ PSL(2, R) with

4(3, 5, 5)h = U C
(2)

4(2, 5, 6).

Therefore 4(3, 5, 5) is isomorphic to a subgroup of 4(2, 5, 6). 1

To decide whether Nh
1 and Nh

2 are conjugate in 4(2, 5, 6), the normal subgroups N1 and N2 have
to be embedded into 4(2, 5, 6). This can be done by conjugating each generator of Ni with h or,
equivalently, by executing the homomorphism

τ : 4(3, 5, 5) 7→ 4(2, 5, 6), τ(x1) = xh
1 = (x2y2)2, τ(y1) = yh

1 = (x2y2)−2y2.

This yields the inclusion

Nh
1 , Nh

2 C
(60)

4(3, 5, 5)h C
(2)

4(2, 5, 6).

Since N1 and N2 each have 18 generators, the calculation of Nh
1 and Nh

2 was done using GAP. The
results of the calculations can be summarized as follows:

(1) Nh
1 C 4(2, 5, 6), 4(2, 5, 6)/Nh

1
∼= S5.

(2) Nh
2 C 4(2, 5, 6), 4(2, 5, 6)/Nh

2 � S5.

(3) Nh
1 6= Nh

2 and therefore Nh
1 and Nh

2 are not conjugate in 4(2, 5, 6).

1In the (german) long version of this diploma a triangle group 4(m1, m2, m3) is embedded in PSL(2, R) using
the following presentation:

4(m1, m2, m3) = 〈x, y |xm1 = ym2 = (x1y1)m3 = 1〉,

x =

„
− cos α − sin α
sin α − cos α

«
and y =

„− cos β − sin β q
sin β 1

q
− cos β

«
,

by choosing the variables as

q =
1 + B

1−B
, B =

s
cos(α + β) + cos γ

cos(α− β) + cos γ
, α =

π

m1
, β =

π

m2
, γ =

π

m3
.

The triangle group is contained in the following multiplicative closed set

4(m1, m2, m3) = 〈x, y〉 ⊂ M4(m1,m2,m3) =
˘

[a, b, c, d]4(m1,m2,m3)

˛̨
a, b, c, d ∈ F

¯
,

[a, b, c, d]4(m1,m2,m3) =

„
a + b sin α sin β q c sin α + d sin β q
−c sin α− d sin β 1

q
a + b sin α sin β 1

q

«
over the field F = Q(cos α, cos β, cos γ). Further it is shown, that the conjugating element h ∈ PSL(2, R) can be
expressed as

h =

»
3

8

√
3

“√
5 + 3

”
, −

3

4

“√
5 + 3

”
, −

3

8

“√
5 + 1

”
, 0

–
4(2,5,6)

∈ M4(2,5,6).
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Torsion free normal subgroups

The aim of this section is to show that N1 and N2 are torsion free.

Definition 2.9 A subgroup N of a Fuchsian group G is called torsion free if the unit element is
the only element of N of finite order.

Theorem 2.10 (Corollary 2.10 in [Mag74]) If N is a normal subgroup of the triangle group

G = 4(m1,m2,m3) = 〈x, y |xm1 = ym2 = (xy)m3 = 1〉

such that, under the homomorphism G 7→ G/N the elements x, y, xy of G are respectively mapped
onto elements of the same order m1, m2, m3 in G/N , then N is torsion free.

Using this strong result the following corollary can be concluded.

Corollary 2.11 If p, q, r are primes, then a normal subgroup N of the triangle group 4(p, q, r)
is torsion free if and only if x, y, xy /∈ N .

Proof. Since xp = 1, the equation (xN)p = N also holds. Because of the assumptions that p is a
prime and xN 6= N , it follows that xN must have order p. Analogously it can be obtained, that
the order of yN must be q and the order of xyN is r. Now theorem 2.10 implies that the normal
subgroup N must be torsion free. 2

This theorem shows that the normal subgroups N1 and N2 are torsion free. The author thanks
Prof. G. Rosenberger for the useful email conversation related to this and his submission of an even
simpler proof of this statement.

Theorem 2.12 (Private communication with Prof. G. Rosenberger) The kernel N of ev-
ery epimorphism 4(3, 5, 5) 7→ A5 is torsion free.

Proof. This is a proof by contradiction. Suppose that the normal subgroup N is not torsion free.
Then N contains an element g of finite order. By theorem 2.10 of [Mag74] g is conjugate to a
power of x, y or xy. So three cases must be considered.

If g is conjugate to a power of x, then the element x itself will be contained in N , because N
is a normal subgroup. The quotient group G/N is a homomorphic image of G = 4(3, 5, 5) and
therefore it is generated by the images of the generators x and y:

G/N = 〈xN, yN〉.

For x ∈ N this reads as G/N = 〈yN〉. In this case G/N would be cyclic of order 5 and not
isomorphic to the alternating group A5.

In the second case the element g is conjugate to a power of y. Analogously it follows that y ∈ N
and hence G/N = 〈xN〉. Since G/N would be cyclic of order 3 this case can also not occure.

In the third case g is conjugated to a power of xy. Again xy ∈ N can be concluded. From
xyN = N it follows that yN = x−1N and therefore since N = (yN)5 = x−5N it follows that
(xN)5 = 1. Since the equation (xN)3 = 1 holds, it must be xN = N . But this is impossible as
shown in the first case above.

By contradiction, it was therefore proved that N is torsion free. This completes the indirect
proof of the theorem. 2

Surface groups

The aim of this section is to show that N1 and N2 are surface groups.

Definition 2.13 A surface group is a torsion free Fuchsian group with cocompact fundamental
region.

Because of the last section, it is sufficient to show, that N1 and N2 have a cocompact fundamental
region. Since they are subgroups of 4(3, 5, 5) with finite index, the Riemann-Hurwitz formula
states that

µ(Ni) = |4(3, 5, 5) : Ni| · µ(4(3, 5, 5)) = 60 µ(4(3, 5, 5)),

whereby µ(Γ) is defined to be the hyperbolic measure of H2/Γ or equivalently of a fundamental
region for Γ. For cocompact groups this measure is finite. Since 4(3, 5, 5) is cocompact, every
subgroup of finite index must be cocompact, too.
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Proof of the main theorem

Definition 2.14 For G ≤ PSL(2, R) define with

N(G) = NPSL(2,R)(G) = {α ∈ PSL(2, R) |αGα−1 = G}

the normalizer of G in PSL(2, R).

Theorem 2.15 (Private communication with Prof. J. Wolfart) The normalizer of a non-
cyclic Fuchsian group is a Fuchsian group.

Theorem 2.16 (Theorem 9 in [GW04]) If the PSL(2, R)-conjugate surface groups K and K ′

are both normal subgroups of the triangle group ∆, then K ′ = αKα−1 for some α ∈ N(∆) or N(∆̃)
where ∆̃ denotes the normalizer N(K) of K in PSL(2, R).

For the inclusion 4(3, 5, 5) . 4(2, 5, 6) this theorem states:

Theorem 2.17 Let K and K ′ be two surface groups that are normal subgroups of 4(3, 5, 5) and
conjugate in PSL(2, R). Then there exists an element α ∈ 4(2, 5, 6)∪N(N(K)) with αKα−1 = K ′.

This theorem can also be expressed as follows:

Theorem 2.18 Let K and K ′ be two surface groups that are normal subgroups of 4(3, 5, 5) and
that are not conjugate in 4(2, 5, 6). If for every element α ∈ N(N(K)) the condition αKα−1 6= K ′

holds, the subgroups K and K ′ are not conjugate in PSL(2, R).

Lemma 2.19 If K E 4(3, 5, 5) C 4(2, 5, 6), then N(N(K)) = 4(2, 5, 6).

Proof. There are two cases to consider.

(a) If K C 4(2, 5, 6), then 4(2, 5, 6) ≤ N(K) by definition of the normalizer. In this case
lemma 2.1 states, that N(K) must be a triangle group. By maximality of 4(2, 5, 6), it
follows that N(K) = 4(2, 5, 6). Hence it is N(N(K)) = N(4(2, 5, 6)) = 4(2, 5, 6) because
4(2, 5, 6) ≤ N(4(2, 5, 6)) and 4(2, 5, 6) is maximal.

(b) If K 6C 4(2, 5, 6), then at least 4(3, 5, 5) ≤ N(K) holds because of K C 4(3, 5, 5) and the
definition of the normalizer. Using Lemma 2.1 it can be obtained that N(K) is a triangle
group. After looking to all inclusions between triangle groups using theorem 2.3 the only pos-
sible case is N(K) = 4(3, 5, 5). Further it can be concluded that N(N(K)) = N(4(3, 5, 5)) =
4(2, 5, 6) as stated because 4(3, 5, 5) C 4(2, 5, 6) and in this case the argumentation of part
(a) of this proof can be used. 2

Using this lemma, the theorem above reads as:

Theorem 2.20 Let K and K ′ be two surface groups that are normal subgroups of 4(3, 5, 5). If
they are not conjugate in 4(2, 5, 6), then they are not conjugate in PSL(2, R).

Proof of Main Theorem 2.8. In the last sections it was shown that N1 and N2 are surface
groups that are not conjugate in 4(2, 5, 6). Using theorem 2.20 it can be concluded that they are
also not conjugate in PSL(2, R). 2
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